Strong Limits on Accreting IMBHs in Globular Clusters

Laura Chomiuk (Michigan State) with

Jay Strader (MSU) Laura Shishkovsky (MSU) Evangelia Tremou (MSU) Tom Maccarone (Texas Tech) James Miller-Jones (Curtin) Anil Seth (Utah) Craig Heinke (Alberta) Greg Sivakoff (Alberta) Eva Noyola (UNAM)

Expanding the sample of GCs with deep radio observations

NGC

6719

Selecting clusters for likelihood of detecting IMBHs and stellar-mass BHs:

Expansion Approved!

280 Hours on Jansky VLA: 28 GCs (Dec > -35 deg), each reaching sensitivity $1\sigma = 1.5 \mu Jy$ 560 Hours on ATCA: 26 Southern GCs, each reaching sensitivity $1\sigma = 3.5 \mu Jy$

Spanning a range of cluster properties

Searching for IMBHs with the "Fundamental Plane" of BH activity

Predicting radio emission from IMBHs

- 1.Globular clusters have gas
 from giants
- 2. Some gas will accrete onto IMBH

3. Accretion will produce X-ray and radio emission with some efficiency

Predicting radio emission from IMBHs

(i) ICM density: 0.2 cm⁻³ (ii) Accretion rate: 3% of Bondi (iii) efficiency: $\epsilon \propto \dot{m}$ (not 0.1) (iv) $L_X = \epsilon \dot{m} c^2$ (v) IMBH is on fundamental plane

formalism: Maccarone (2004), Maccarone & Servillat (2008), Strader et al (2012)

Predicting radio emission from IMBHs: Typical Numbers

$$\dot{m}/\dot{m}_{edd} \approx 5 \times 10^{-7}$$

 $\dot{m} \approx 5 \times 10^{-12} M_{\odot} \text{ yr}^{-1}$

Accretion rate is 0.1% of wind from a single red giant.

Predicting radio emission from IMBHs: Typical Numbers

$$\dot{m}/\dot{m}_{edd} \approx 5 \times 10^{-7}$$

 $\dot{m} \approx 5 \times 10^{-12} M_{\odot} \text{ yr}^{-1}$

Accretion rate is 0.1% of wind from a single red giant.

$$\epsilon \approx 10^{-6}$$

Radiative efficiency comparable to Sgr A*.

$$L_X \approx 10^{30} \text{ erg/s}$$

IMBH Non-detections in all GCs (16, to date)

X-ray observations place similar limits.

ω Cen (Haggard et al. 2013) 291 ks of Chandra time At center: $< 1.6 \times 10^{30} \text{ erg/s}$ $M_{\rm BH}$ < 4×10^3 M $_{\odot}$

But radio observations are more efficient.

7 μJy radio (8 ks on VLA) or (36 ks on ATCA)

equivalent to

1.6x10³⁰ erg/s X-ray
(291 ks on Chandra)

Strong Limits on IMBHs in GCs (16, to date)

IMBHs aren't so massive.

or

Accretion is very inefficient 1) ICM density 2) Fraction of Bondi 3) Radiative efficiency: $\epsilon = 0.1 ((\dot{M}/\dot{M}_{edd})/0.02)$

Strong Limits on IMBHs in GCs (16, to date)

A clever strategy for expanding IMBH searches

Stack of 245 GCs in NGC 1023 (11 Mpc) rms ~ 1.2 µJy/beam in just 5 minutes on source!

A clever strategy for expanding IMBH searches

Stack of 245 GCs in NGC 1023 (11 Mpc) rms ~ 1.2 µJy/beam in just 5 minutes on source!

Future stacks of MW GCs will give deepest limits.

 $\langle \approx 300 \text{ M}_{\odot} \rangle$ at $\langle 7 \text{ kpc} \rangle$

Stay Tuned!